高光譜圖像怎么分類?高光譜圖像分類方法
發(fā)布時間:2024-05-17
瀏覽次數(shù):367
高光譜圖像怎么分類?高光譜圖像分類一般包括圖像預(yù)處理、標記訓(xùn)練樣本、特征提取及選擇、分類判決及精度評價五個部分,下文一一介紹。
高光譜圖像怎么分類?高光譜圖像分類一般包括圖像預(yù)處理、標記訓(xùn)練樣本、特征提取及選擇、分類判決及精度評價五個部分,下文一一介紹。
1.圖像預(yù)處理
由于高光譜影像在獲取過程中存在一定的噪聲,以及不同程度、不同性質(zhì)輻射量的失真和幾何畸變等現(xiàn)象。這些畸變和失真均會導(dǎo)致圖像質(zhì)量下降,嚴重影響其應(yīng)用效果,必須進行預(yù)處理來消除這些因素的影響。高光譜數(shù)據(jù)的預(yù)處理包括很多方面的內(nèi)容,主要包括條帶噪聲去除、波段間配準、數(shù)據(jù)壓縮、光譜定標等。
2.標記訓(xùn)練樣本
在分類時,訓(xùn)練樣本的選取是非常重要的,直接關(guān)乎后面的分類結(jié)果。在開始數(shù)據(jù)分析之前,一般先選取紅、綠、藍波段或者是其他波段合成假彩色圖像,根據(jù)假彩色合成圖像來進行整體的直觀分析,從而確定出所要分類的類別組。定義的最優(yōu)類別需要滿足所做分類的有用性和可分性,同時要滿足分類的完整性。
3.特征提取與特征選擇
一般來說,盡管光譜中的每個波段圖像都提供了研究對象的一定信息,但其重要性有所不同,而且在很多情況下,各波段圖像所提供的信息常常有所重疊,波段間具有很強的相關(guān)性。為了消除數(shù)據(jù)間不必要的冗余信息,減少數(shù)據(jù)量和計算時間,需要對高光譜圖像進行特征提取。特征提取是通過映射和變換的方法,把原始模式空間的高維數(shù)據(jù)變成特征空間的低維數(shù)據(jù)。然后對特征更集中的低維數(shù)據(jù)進行處理。特征提取可以分兩類:一類是基于變換的方法,如主成分分析、最小噪聲分離變換,小波變換等,這些降維方法的優(yōu)點是將高維數(shù)據(jù)直接降低到低,速度很快;另一類是基于非變換的,如波段選擇等,它的優(yōu)點是保持了圖像的原有特征。
4.分類判決
分類判決是分類處理的核心階段,它關(guān)系到是否能夠充分挖掘高光譜圖像所包含豐富信息。高光譜圖像的分類過程中,由于高光譜圖像分辨率很高,所以能夠識別的類別的數(shù)目就比較多,用一些傳統(tǒng)的分類方法來進行分類的話,其分類效果就比較差了,這就需要一些根據(jù)圖像特點和分類目的設(shè)計或選擇怡當(dāng)?shù)姆诸惼骷捌渑袥Q準則來提高其分類精度,對未知區(qū)域的樣本進行類別歸屬的判斷。
5.分類結(jié)果和精度評價
分類結(jié)束后,要對分類結(jié)果進行評價,確定分類的精度和可靠性。高光譜圖像分類精度評價是指在完成高光譜圖像分類后,依據(jù)地面真實標記參考圖,評估分類后影像的準確性。隨著高光譜遙感技術(shù)的進展,以及不同應(yīng)用的復(fù)雜化具體化,高光譜圖像分類精度評價顯得越來越重要。比較常用的分類精度評價的方法有混淆矩陣、總體分類精度、Kappa錯分誤差三種評價方法。
相關(guān)產(chǎn)品
-
高光譜成像技術(shù)精準測試防火材料阻燃隔熱性能
火災(zāi)頻發(fā),防火材料至關(guān)重要 近年來,火災(zāi)頻發(fā),給人們的生命財產(chǎn)安全帶來了巨大威脅。從居民樓火災(zāi)到森林大火,每一次火災(zāi)事故都令人痛心疾首。據(jù)相關(guān)統(tǒng)計,僅在過去一..
-
高光譜成像技術(shù)對鮮蓮直鏈淀粉含量檢測實驗室研究
高光譜成像技術(shù)是一種能獲取豐富光譜和圖像信息的無損檢測技術(shù),相較于化學(xué)檢測方法,具有省時、省力、環(huán)境友好的優(yōu)點口。本文將采用高光譜成像技術(shù)對鮮蓮直鏈淀粉進行實驗..
-
高光譜相機:開啟紙張分選的精準時代
在環(huán)保日益受到重視的當(dāng)下,廢紙回收成為了資源循環(huán)利用的關(guān)鍵一環(huán)。每年,全球產(chǎn)生的廢紙數(shù)量驚人,據(jù)相關(guān)數(shù)據(jù)顯示,僅我國每年紙張消費就呈約 3500 萬噸,若以廢棄..
-
高光譜成像技術(shù)牛奶蛋白含量的實驗室研究
牛奶作為人們?nèi)粘I钪兄匾臓I養(yǎng)來源,其蛋白質(zhì)含量是衡量其營養(yǎng)價值的關(guān)鍵指標之一。傳統(tǒng)的牛奶蛋白含量檢測方法,如凱氏定氮法、高效液相色譜法等,雖然能夠得到較為準..