無(wú)人機(jī)光譜儀在田間煙草中的應(yīng)用
發(fā)布時(shí)間:2023-03-29
瀏覽次數(shù):704
無(wú)人機(jī)光譜儀在煙草中的應(yīng)用主要集中在煙草生長(zhǎng)信息的快速準(zhǔn)確提取上,特別是隨著無(wú)人機(jī)技術(shù)的發(fā)展,使用無(wú)人機(jī)攜帶高光譜相機(jī)快速或農(nóng)田作物信息已成為一種趨勢(shì)。
無(wú)人機(jī)光譜儀在煙草中的應(yīng)用主要集中在煙草生長(zhǎng)信息的快速準(zhǔn)確提取上,特別是隨著無(wú)人機(jī)技術(shù)的發(fā)展,使用無(wú)人機(jī)攜帶高光譜相機(jī)快速或農(nóng)田作物信息已成為一種趨勢(shì)。利用無(wú)人機(jī)高光譜監(jiān)測(cè)煙草脅迫、煙草成熟度、產(chǎn)量估算和質(zhì)量,及時(shí)調(diào)整各種材料的投資,減少浪費(fèi),增加產(chǎn)量,提高煙草質(zhì)量。
提取煙草生長(zhǎng)信息
在作物生產(chǎn)中,快速準(zhǔn)確地判斷作物氮的營(yíng)養(yǎng)狀況對(duì)實(shí)現(xiàn)作物的實(shí)時(shí)準(zhǔn)確施肥具有重要意義。
植物的光合色素分為葉綠素(葉綠素a)、葉綠素b)和類(lèi)胡蘿卜素(胡蘿卜素、葉黃素),前者是吸收光能的物質(zhì),直接影響植被對(duì)光能的利用,后者可以保護(hù)葉綠素。與傳統(tǒng)方法相比,利用高光譜儀測(cè)定葉片中色素含量具有實(shí)時(shí)、快速、非損傷等優(yōu)點(diǎn),成為近年來(lái)研究的熱點(diǎn)。在煙草中,利用高光譜測(cè)定葉片中葉綠素的含量也取得了一定的研究成果。對(duì)南江3號(hào)煙葉高光譜參數(shù)與葉綠素含量的研究表明,葉綠素a(Chla)700nm和623nm分別出現(xiàn)與原始光譜反射率的最大相關(guān)系數(shù)和光譜一階微分的最大相關(guān)系數(shù);葉綠素h(Chlb)出現(xiàn)在701nm和653nm處。與Chla、Chlb含量相關(guān)系數(shù)最大的高光譜參數(shù)是綠峰位置()與紅邊面積與藍(lán)邊面積的比值(SDr/SDb),基于光譜反射率一階微分的煙草葉片葉綠素a模型采用逐步回歸法建立、葉綠素B含量的估計(jì)效果好,精度高。
LAI是葉面積指數(shù)(LeafAreaIndex)作為陸地過(guò)程中非常重要的結(jié)構(gòu)參數(shù),它是表示植被冠層最基本的參數(shù)之一,通常是產(chǎn)量估計(jì)模型和土壤水蒸發(fā)蒸騰模型的輸入?yún)?shù)。前人研究報(bào)告說(shuō),綠色作物的光譜反射率與LAI密切相關(guān),越來(lái)越多的學(xué)者使用高光譜遙感技術(shù)來(lái)反映葉面積指數(shù)。張正陽(yáng)利用植被指數(shù)法、主要成分分析和神經(jīng)網(wǎng)絡(luò)建立了煙草LAI高光譜估計(jì)模型,取得了良好的效果;主要成分分析驗(yàn)證模型穩(wěn)定性較好,RMSE為0.172,低于植被指數(shù)和神經(jīng)網(wǎng)絡(luò)。
煙草脅迫監(jiān)測(cè)
研究不同水處理對(duì)煙草高光譜特性的影響表明,在水脅迫下(45%和65%水處理),煙草冠層高光譜的紅邊位置“紅移”,而85%的水處理由于水分過(guò)多而導(dǎo)致葉片提前變黃,葉綠素含量降低,導(dǎo)致紅邊位置“藍(lán)移”。高光譜遙感也可用于監(jiān)測(cè)重金屬對(duì)煙草的脅迫。福的歸一化污染指數(shù)CNDPI建立在敏感波段(551、672、720nm)下,確定當(dāng)CNDPI值大于0.3時(shí),煙株中會(huì)出現(xiàn)鎘污染,實(shí)現(xiàn)了利用光譜數(shù)據(jù)區(qū)分煙葉是否被鎘污染的定性目標(biāo)。利用高光譜遙感技術(shù)監(jiān)測(cè)煙草病蟲(chóng)害的研究主要集中在煙草病蟲(chóng)害上。采用逐步回歸方法,建立了煙草病害等級(jí)和病株高度的光譜反射率、光譜反射率第一階微分和光譜特征變量的回歸方程。模型檢驗(yàn)發(fā)現(xiàn),光譜反射率第一階微分回歸模型的相關(guān)系數(shù)為0.999,估計(jì)效果最好,其次是光譜反射率回歸模型。
病蟲(chóng)害監(jiān)測(cè)
當(dāng)植物受到病蟲(chóng)害的影響時(shí),葉片的顏色、結(jié)構(gòu)和外觀會(huì)發(fā)生變化,從而導(dǎo)致葉片反射率的變化。如果害蟲(chóng)吃葉子或?qū)е氯~子卷曲和脫落,也會(huì)導(dǎo)致光譜特征曲線的變化,從而通過(guò)監(jiān)測(cè)寄主植物光譜曲線的變化來(lái)監(jiān)測(cè)害蟲(chóng)的發(fā)生。喬紅波研究了三種危害:輕(單株頂部和上部5片葉蚜量≤15頭)、中(15頭≤單株頂部和上部5片葉蚜的量≤50頭)和重(單株頂部和上部5片葉蚜的量≥50頭)煙蚜危害煙草的光譜特征。結(jié)果表明,煙蚜?xí)?dǎo)致煙草光譜反射率下降,尤其是近紅外波段。綠光波段光譜反射率分別下降12%、27%和52%,近紅外波段光譜反射率分別下降15%、20%和38%。隨著蚜蟲(chóng)數(shù)量的增加,一階導(dǎo)數(shù)光譜反射率的最大值下降,在綠光、紅光、藍(lán)光和近紅外光波段之間建立了煙蚜危害下煙葉光譜反射率和葉綠素SPAD值之間的線性擬合回歸方程。SPAD值越大,光譜反射率越高。(p其中,在綠光波段建立的擬合方程擬合效果最好。煙蚜的危害導(dǎo)致葉綠素含量下降,煙葉光合作用強(qiáng)度降低。SPAD值越大,光譜反射率越高。因此,可以監(jiān)測(cè)煙草生產(chǎn)中病蟲(chóng)害的發(fā)生,確定防治期和措施。
產(chǎn)量估算
煙草地面生物量是反映煙草代謝和光合作用的重要指標(biāo)。許多研究表明,通過(guò)提取高光譜變量,根據(jù)數(shù)據(jù)條件建立有效的估計(jì)模型,可以監(jiān)測(cè)煙草產(chǎn)量Rr。通過(guò)建立回歸模型,對(duì)17種光譜變量與煙草地上新生物量與干生物量的關(guān)系進(jìn)行了評(píng)估和篩選Rr、
R的兩個(gè)高光譜參數(shù)作為地面生物量的特征變量,其中RG/RR的決定系數(shù)R2最高,達(dá)到了非常顯著的水平。新鮮生物量和干生物量分別為0.640和0.620,回歸模型的可靠性通過(guò)反演檢驗(yàn)證明。
品質(zhì)監(jiān)測(cè)
高光譜與煙草的生理生化指標(biāo)、礦物質(zhì)元素指標(biāo)和煙草質(zhì)量指標(biāo)有一定的相關(guān)性。通過(guò)逐步回歸分析,建立估算和監(jiān)測(cè)模型,可以快速獲得各種煙草指標(biāo)值,及時(shí)指導(dǎo)生產(chǎn)。李向陽(yáng)通過(guò)設(shè)置不同類(lèi)型的煙草、不同的煙草品種、不同的氮、磷、鉀處理試驗(yàn),篩選出總氮和葉綠素a、葉綠素b、類(lèi)胡蘿卜素含量與總量等生理生化指標(biāo)關(guān)系最密切的光譜特征變量RG/Rr,并建立各種生理生化指標(biāo)的監(jiān)測(cè)模型。
(成熟煙草)
同時(shí),高光譜的27個(gè)參數(shù)與礦物質(zhì)元素指標(biāo)(鈣、鉀、鎂、硼、銅、鐵、錳、鈉、磷、鋅等10個(gè)元素)的回歸建模,都取得了良好的估計(jì)效果。分析了烤煙葉的葉綠素含量和光譜參數(shù),結(jié)合烤煙葉的化學(xué)指標(biāo)和香氣成分指標(biāo),建立了相關(guān)的估計(jì)模型。分析了煙葉光譜與化學(xué)質(zhì)量指標(biāo)的關(guān)系,篩選出與煙葉氮、鉀、煙堿、總糖含量相關(guān)的光譜特征參數(shù),建立了診斷模型。
研究展望
研究表明,光照、水肥因素、品種類(lèi)型和生育期對(duì)煙草光譜特性有一定的影響。利用高光譜技術(shù),可以更準(zhǔn)確地診斷和監(jiān)測(cè)煙草的生長(zhǎng)、營(yíng)養(yǎng)狀況、產(chǎn)量和質(zhì)量,具有廣闊的應(yīng)用前景。目前,高光譜技術(shù)在煙草中進(jìn)行了更廣泛的研究,提出了一系列的監(jiān)測(cè)和估算模型,但由于每個(gè)模型都有特定的研究方法和適用條件,難以找到一般模型,需要建立更全面、更大規(guī)模的樣本參數(shù)進(jìn)行修正,以減少實(shí)際生產(chǎn)、品種類(lèi)型、生態(tài)條件和栽培管理的差異。今后,煙草高光譜技術(shù)的研究應(yīng)重點(diǎn)完善和擴(kuò)大煙草光譜數(shù)據(jù)庫(kù),加強(qiáng)高光譜相關(guān)數(shù)據(jù)的收集和挖掘,加強(qiáng)與GIS的差異、GPS技術(shù)的結(jié)合應(yīng)用促進(jìn)了高光譜技術(shù)在煙草中的應(yīng)用。
相關(guān)產(chǎn)品
-
高光譜成像技術(shù)精準(zhǔn)測(cè)試防火材料阻燃隔熱性能
火災(zāi)頻發(fā),防火材料至關(guān)重要 近年來(lái),火災(zāi)頻發(fā),給人們的生命財(cái)產(chǎn)安全帶來(lái)了巨大威脅。從居民樓火災(zāi)到森林大火,每一次火災(zāi)事故都令人痛心疾首。據(jù)相關(guān)統(tǒng)計(jì),僅在過(guò)去一..
-
高光譜成像技術(shù)對(duì)鮮蓮直鏈淀粉含量檢測(cè)實(shí)驗(yàn)室研究
高光譜成像技術(shù)是一種能獲取豐富光譜和圖像信息的無(wú)損檢測(cè)技術(shù),相較于化學(xué)檢測(cè)方法,具有省時(shí)、省力、環(huán)境友好的優(yōu)點(diǎn)口。本文將采用高光譜成像技術(shù)對(duì)鮮蓮直鏈淀粉進(jìn)行實(shí)驗(yàn)..
-
高光譜相機(jī):開(kāi)啟紙張分選的精準(zhǔn)時(shí)代
在環(huán)保日益受到重視的當(dāng)下,廢紙回收成為了資源循環(huán)利用的關(guān)鍵一環(huán)。每年,全球產(chǎn)生的廢紙數(shù)量驚人,據(jù)相關(guān)數(shù)據(jù)顯示,僅我國(guó)每年紙張消費(fèi)就呈約 3500 萬(wàn)噸,若以廢棄..
-
高光譜成像技術(shù)牛奶蛋白含量的實(shí)驗(yàn)室研究
牛奶作為人們?nèi)粘I钪兄匾臓I(yíng)養(yǎng)來(lái)源,其蛋白質(zhì)含量是衡量其營(yíng)養(yǎng)價(jià)值的關(guān)鍵指標(biāo)之一。傳統(tǒng)的牛奶蛋白含量檢測(cè)方法,如凱氏定氮法、高效液相色譜法等,雖然能夠得到較為準(zhǔn)..