利用高光譜相機分析小龍蝦品質
發(fā)布時間:2023-05-10
瀏覽次數(shù):559
高光譜圖像數(shù)據(jù)采集采用高光譜相機。該儀器在于實現(xiàn)非破壞性無接觸式檢測、測量、分析。光譜范圍廣,可覆蓋400-700nm的可見光,波長分辨率優(yōu)于2.5nm,多達600個光譜通道;可適配多種探測器滿足不同使用環(huán)境。
1. 高光譜設備介紹
高光譜圖像數(shù)據(jù)采集采用高光譜相機。該儀器在于實現(xiàn)非破壞性無接觸式檢測、測量、分析。光譜范圍廣,可覆蓋400-700nm的可見光,波長分辨率優(yōu)于2.5nm,多達600個光譜通道;可適配多種探測器滿足不同使用環(huán)境。
圖1高光譜相機
2. 實驗目標利用高光譜相機技術對成熟的小龍蝦進行品質分析,研究不同品質小龍蝦的光譜差異并通過高光譜成像技術快速識別不同品質的小龍蝦,為餐飲行業(yè)行業(yè)快速識別不同品質小龍蝦提供技術支持。圖2為需要利用高光譜成像設備采集分析的小龍蝦樣本,左邊為品質好的小龍蝦,右邊為品質壞的小龍蝦。
圖2 需要高光譜設備采集的實驗目標
3. 實驗結果
3.1 可見近紅外、短波紅外高光譜的小龍蝦光譜分析
在小龍蝦身上不同部分分別選取約200個像素點取均值代表小龍蝦該部分的光譜反射率,如圖3所示,分別列舉了品質好的和壞的小龍蝦外殼、蝦爪、蝦尾和蝦腹在可見近紅外波長范圍的光譜進行分析,并對原始光譜作了一階導數(shù)分析,目的是為了更加深入地了解不同品質的小龍蝦其不同部位的光譜差異。圖3左為品質好的與壞的小龍蝦不同部位的原始光譜反射率曲線,從圖中可知,小龍蝦不同部位的光譜反射率在400-530nm之前差異較小,但在530nm之后小龍蝦不同部位的光譜曲線差異較大。對于品質壞的小龍蝦,其外殼光譜的陡坡位置相對于品質好的小龍蝦而言,發(fā)生了“藍移”;另外品質壞的小龍蝦,其蝦爪、蝦尾、蝦腹等部位與品質好的小龍蝦,其光譜反射率差異也較大。圖3右更能清晰地看出不同品質的小龍蝦不同部位的光譜差異及品質好與品質差的小龍蝦在400-1000nm范圍內的光譜差異,從其峰谷位置及峰谷的高低,很顯著地看出品質好與品質差的小龍蝦的光譜差異。
圖3 基于可見/近紅外高光譜成像技術小龍蝦不同部位的光譜曲線
與可見、近紅外高光譜成像技術分析小龍蝦光譜一樣,在短波紅外的高光譜圖像上分別選取小龍蝦身上不同部分約200個像素點取均值代表小龍蝦該部分的光譜反射率,如圖4所示,分別列舉了品質好的和壞的小龍蝦外殼、蝦爪、蝦尾和蝦腹在短波紅外范圍的光譜進行分析,并對原始光譜作了一階導數(shù)分析,目的是為了更加深入地了解不同品質的小龍蝦其不同部位的光譜差異。圖4 左為短波紅外1000-2500nm的光譜反射率曲線圖,從圖中可知,在短波紅外范圍,不同品質的小龍蝦及小龍蝦的不同部位光譜反射率曲線變化趨勢相似,不同的是曲線反射率的高低及峰谷的高低。圖4右為不同品質小龍蝦及不同部位在短波紅外范圍的一階導數(shù)光譜曲線。從圖中可知,不同品質的小龍蝦,其峰谷位置及峰谷的值差異較大,小龍蝦不同部位之間的光譜也有顯著差異。
圖4 基于短波紅外高光譜成像技術小龍蝦不同部位的光譜曲線
3.2 小龍蝦品質識別研究
最小噪聲分離變換(Minimum Noise Fraction Rotation,MNF Rotation)工具用于判定圖像數(shù)據(jù)內在的維數(shù)(即波段數(shù)),分離數(shù)據(jù)中的噪聲,減少隨后處理中的計算需求量。MNF本質上是兩次層疊的主成分變換。第一次變換(基于估計的噪聲協(xié)方差矩陣)用于分離和重新調節(jié)數(shù)據(jù)中的噪聲,這步操作使變換后的噪聲數(shù)據(jù)只有最小的方差且沒有波段間的相關。第二步是對噪聲白化數(shù)據(jù)(Noise-whitened)的標準主成分變換。
主成分分析(PCA)是遙感數(shù)字圖像處理中運用比較廣泛的一種算法,是在統(tǒng)計特征基礎上的多維(多波段)正交線性變換。通過PCA變換,可以把多波段圖像中的有用信息集中到數(shù)量盡可能少的新的主成分圖像中,并使這些主成分圖像之間互不相關,從而大大減少總的數(shù)據(jù)量。但PCA變換對噪聲比較敏感,即信息量大的主成分分量,信噪比不一定高,當某個信息量大的主成分中包含的噪聲的方差大于信號的方差時,該主成分分量形成的圖像質量就差, PCA變換用于融合處理并不是為了減少噪聲,而是通過該變換,使得多光譜影像在各個波段具有統(tǒng)計獨立性,便于分別采用相應的融合策略。針對PCA變換的不足,Green等曾經(jīng)提出最小噪聲分離(MNF)變換,隨后,又對MNF變換進行了修改,它本質上是含有兩次疊置處理的主成分分析。
由此可知,MNF變換具有PCA變換的性質,是一種正交變換,變換后得到的向量中的各元素互不相關,第一分量集中了大量的信息,隨著維數(shù)的增加,影像質量逐漸下降,按照信噪比從大到小排列,而不像PCA變換按照方差由大到小排列,從而克服了噪聲對影像質量的影響。正因為變換過程中的噪聲具有單位方差,且波段間不相關,所以它比PCA變換更加優(yōu)越。
圖5為可見、近紅外400-1000nm范圍內基于MNF變化的前9個分量圖,從圖中可知,不同品質的小龍蝦,在第三、第四和第五分量上可以實現(xiàn)很好的判別,而其他分量存則存在不同程度的誤判,結合第三、第四和第五分量以及CART決策樹分類法,可以實現(xiàn)小龍蝦品質的鑒定,如圖6所示,紅色為品質壞的小龍蝦,綠的為品質好的小龍蝦。
圖5 小龍蝦基于400-1000nm的MNF前9個分量圖
圖6 基于400-1000nm范圍內小龍蝦品質分析結果
圖7為短波紅外1000-2500nm范圍內基于MNF變化的前8個分量圖,從圖中可知,不同品質的小龍蝦,除第一、第三、第四和第五MNF變量能區(qū)分出部分品質好的小龍蝦或品質不好的小龍蝦外,其余變量品質好壞的小龍蝦并不顯著區(qū)別。我們利用第一、第三、第四和第五MNF變量結合圖像分類方法中的監(jiān)督分類法用于區(qū)分不同品質的小龍蝦,區(qū)分效果如圖8所示,其中紅色為品質壞的小龍蝦,綠的為品質好的小龍蝦。
圖7 小龍蝦基于1000-2500nm的MNF前8個分量圖
圖8 基于1000-2500nm范圍內小龍蝦品質分析結果
4. 結果與討論
從分析結果來看,基于400-1000nm和1000-2500nm波長范圍的高光譜影像數(shù)據(jù)均能較好地區(qū)分成熟的品質好與壞的小龍蝦。如果僅從MNF的分量上看,基于400-1000nm的可見近紅外高光譜影像識別不同品質的小龍蝦高于基于1000-2500nm的短波紅外,但結合高光譜分析方法,兩者的識別精度并無顯著差別。另外如果將來想在產(chǎn)線上進一步應用,仍需要進一步的分析,這是因為小龍蝦的擺放姿勢對利用高光譜影像數(shù)據(jù)的判別效果影響很大。
相關產(chǎn)品
-
高光譜成像技術精準測試防火材料阻燃隔熱性能
火災頻發(fā),防火材料至關重要 近年來,火災頻發(fā),給人們的生命財產(chǎn)安全帶來了巨大威脅。從居民樓火災到森林大火,每一次火災事故都令人痛心疾首。據(jù)相關統(tǒng)計,僅在過去一..
-
高光譜成像技術對鮮蓮直鏈淀粉含量檢測實驗室研究
高光譜成像技術是一種能獲取豐富光譜和圖像信息的無損檢測技術,相較于化學檢測方法,具有省時、省力、環(huán)境友好的優(yōu)點口。本文將采用高光譜成像技術對鮮蓮直鏈淀粉進行實驗..
-
高光譜相機:開啟紙張分選的精準時代
在環(huán)保日益受到重視的當下,廢紙回收成為了資源循環(huán)利用的關鍵一環(huán)。每年,全球產(chǎn)生的廢紙數(shù)量驚人,據(jù)相關數(shù)據(jù)顯示,僅我國每年紙張消費就呈約 3500 萬噸,若以廢棄..
-
高光譜成像技術牛奶蛋白含量的實驗室研究
牛奶作為人們日常生活中重要的營養(yǎng)來源,其蛋白質含量是衡量其營養(yǎng)價值的關鍵指標之一。傳統(tǒng)的牛奶蛋白含量檢測方法,如凱氏定氮法、高效液相色譜法等,雖然能夠得到較為準..